3.2.85 \(\int (a+b \sec (c+d x))^3 \sin ^5(c+d x) \, dx\) [185]

Optimal. Leaf size=170 \[ -\frac {a \left (a^2-6 b^2\right ) \cos (c+d x)}{d}+\frac {b \left (6 a^2-b^2\right ) \cos ^2(c+d x)}{2 d}+\frac {a \left (2 a^2-3 b^2\right ) \cos ^3(c+d x)}{3 d}-\frac {3 a^2 b \cos ^4(c+d x)}{4 d}-\frac {a^3 \cos ^5(c+d x)}{5 d}-\frac {b \left (3 a^2-2 b^2\right ) \log (\cos (c+d x))}{d}+\frac {3 a b^2 \sec (c+d x)}{d}+\frac {b^3 \sec ^2(c+d x)}{2 d} \]

[Out]

-a*(a^2-6*b^2)*cos(d*x+c)/d+1/2*b*(6*a^2-b^2)*cos(d*x+c)^2/d+1/3*a*(2*a^2-3*b^2)*cos(d*x+c)^3/d-3/4*a^2*b*cos(
d*x+c)^4/d-1/5*a^3*cos(d*x+c)^5/d-b*(3*a^2-2*b^2)*ln(cos(d*x+c))/d+3*a*b^2*sec(d*x+c)/d+1/2*b^3*sec(d*x+c)^2/d

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {3957, 2916, 12, 962} \begin {gather*} -\frac {a^3 \cos ^5(c+d x)}{5 d}+\frac {a \left (2 a^2-3 b^2\right ) \cos ^3(c+d x)}{3 d}+\frac {b \left (6 a^2-b^2\right ) \cos ^2(c+d x)}{2 d}-\frac {a \left (a^2-6 b^2\right ) \cos (c+d x)}{d}-\frac {b \left (3 a^2-2 b^2\right ) \log (\cos (c+d x))}{d}-\frac {3 a^2 b \cos ^4(c+d x)}{4 d}+\frac {3 a b^2 \sec (c+d x)}{d}+\frac {b^3 \sec ^2(c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[c + d*x])^3*Sin[c + d*x]^5,x]

[Out]

-((a*(a^2 - 6*b^2)*Cos[c + d*x])/d) + (b*(6*a^2 - b^2)*Cos[c + d*x]^2)/(2*d) + (a*(2*a^2 - 3*b^2)*Cos[c + d*x]
^3)/(3*d) - (3*a^2*b*Cos[c + d*x]^4)/(4*d) - (a^3*Cos[c + d*x]^5)/(5*d) - (b*(3*a^2 - 2*b^2)*Log[Cos[c + d*x]]
)/d + (3*a*b^2*Sec[c + d*x])/d + (b^3*Sec[c + d*x]^2)/(2*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 962

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && (IGtQ[m, 0] || (EqQ[m, -2] && EqQ[p, 1] && EqQ[d, 0]))

Rule 2916

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Dist[1/(b^p*f), Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x], x
, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rubi steps

\begin {align*} \int (a+b \sec (c+d x))^3 \sin ^5(c+d x) \, dx &=-\int (-b-a \cos (c+d x))^3 \sin ^2(c+d x) \tan ^3(c+d x) \, dx\\ &=\frac {\text {Subst}\left (\int \frac {a^3 (-b+x)^3 \left (a^2-x^2\right )^2}{x^3} \, dx,x,-a \cos (c+d x)\right )}{a^5 d}\\ &=\frac {\text {Subst}\left (\int \frac {(-b+x)^3 \left (a^2-x^2\right )^2}{x^3} \, dx,x,-a \cos (c+d x)\right )}{a^2 d}\\ &=\frac {\text {Subst}\left (\int \left (a^4 \left (1-\frac {6 b^2}{a^2}\right )-\frac {a^4 b^3}{x^3}+\frac {3 a^4 b^2}{x^2}+\frac {-3 a^4 b+2 a^2 b^3}{x}-b \left (-6 a^2+b^2\right ) x-\left (2 a^2-3 b^2\right ) x^2-3 b x^3+x^4\right ) \, dx,x,-a \cos (c+d x)\right )}{a^2 d}\\ &=-\frac {a \left (a^2-6 b^2\right ) \cos (c+d x)}{d}+\frac {b \left (6 a^2-b^2\right ) \cos ^2(c+d x)}{2 d}+\frac {a \left (2 a^2-3 b^2\right ) \cos ^3(c+d x)}{3 d}-\frac {3 a^2 b \cos ^4(c+d x)}{4 d}-\frac {a^3 \cos ^5(c+d x)}{5 d}-\frac {b \left (3 a^2-2 b^2\right ) \log (\cos (c+d x))}{d}+\frac {3 a b^2 \sec (c+d x)}{d}+\frac {b^3 \sec ^2(c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.41, size = 154, normalized size = 0.91 \begin {gather*} \frac {-60 a \left (5 a^2-42 b^2\right ) \cos (c+d x)+60 \left (9 a^2 b-2 b^3\right ) \cos (2 (c+d x))+50 a^3 \cos (3 (c+d x))-120 a b^2 \cos (3 (c+d x))-45 a^2 b \cos (4 (c+d x))-6 a^3 \cos (5 (c+d x))-1440 a^2 b \log (\cos (c+d x))+960 b^3 \log (\cos (c+d x))+1440 a b^2 \sec (c+d x)+240 b^3 \sec ^2(c+d x)}{480 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[c + d*x])^3*Sin[c + d*x]^5,x]

[Out]

(-60*a*(5*a^2 - 42*b^2)*Cos[c + d*x] + 60*(9*a^2*b - 2*b^3)*Cos[2*(c + d*x)] + 50*a^3*Cos[3*(c + d*x)] - 120*a
*b^2*Cos[3*(c + d*x)] - 45*a^2*b*Cos[4*(c + d*x)] - 6*a^3*Cos[5*(c + d*x)] - 1440*a^2*b*Log[Cos[c + d*x]] + 96
0*b^3*Log[Cos[c + d*x]] + 1440*a*b^2*Sec[c + d*x] + 240*b^3*Sec[c + d*x]^2)/(480*d)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 174, normalized size = 1.02

method result size
derivativedivides \(\frac {b^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{2}+\sin ^{2}\left (d x +c \right )+2 \ln \left (\cos \left (d x +c \right )\right )\right )+3 b^{2} a \left (\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 b \,a^{2} \left (-\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a^{3} \left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )}{5}}{d}\) \(174\)
default \(\frac {b^{3} \left (\frac {\sin ^{6}\left (d x +c \right )}{2 \cos \left (d x +c \right )^{2}}+\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{2}+\sin ^{2}\left (d x +c \right )+2 \ln \left (\cos \left (d x +c \right )\right )\right )+3 b^{2} a \left (\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}+\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+3 b \,a^{2} \left (-\frac {\left (\sin ^{4}\left (d x +c \right )\right )}{4}-\frac {\left (\sin ^{2}\left (d x +c \right )\right )}{2}-\ln \left (\cos \left (d x +c \right )\right )\right )-\frac {a^{3} \left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )}{5}}{d}\) \(174\)
norman \(\frac {\frac {\left (16 a^{3}+24 b \,a^{2}-48 b^{2} a +16 b^{3}\right ) \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {16 a^{3}-240 b^{2} a}{15 d}-\frac {\left (6 b \,a^{2}-4 b^{3}\right ) \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {\left (18 b \,a^{2}-12 b^{3}\right ) \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {\left (16 a^{3}+30 b \,a^{2}-240 b^{2} a -20 b^{3}\right ) \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{5 d}-\frac {\left (16 a^{3}+270 b \,a^{2}-240 b^{2} a -180 b^{3}\right ) \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{15 d}-\frac {\left (32 a^{3}-72 b \,a^{2}+96 b^{2} a -48 b^{3}\right ) \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{5}}+\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d}-\frac {b \left (3 a^{2}-2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d}\) \(350\)
risch \(3 i a^{2} b x -2 i b^{3} x +\frac {5 a^{3} {\mathrm e}^{3 i \left (d x +c \right )}}{96 d}-\frac {{\mathrm e}^{3 i \left (d x +c \right )} b^{2} a}{8 d}+\frac {9 \,{\mathrm e}^{2 i \left (d x +c \right )} b \,a^{2}}{16 d}-\frac {{\mathrm e}^{2 i \left (d x +c \right )} b^{3}}{8 d}-\frac {5 a^{3} {\mathrm e}^{i \left (d x +c \right )}}{16 d}+\frac {21 \,{\mathrm e}^{i \left (d x +c \right )} b^{2} a}{8 d}-\frac {5 a^{3} {\mathrm e}^{-i \left (d x +c \right )}}{16 d}+\frac {21 \,{\mathrm e}^{-i \left (d x +c \right )} b^{2} a}{8 d}+\frac {9 \,{\mathrm e}^{-2 i \left (d x +c \right )} b \,a^{2}}{16 d}-\frac {{\mathrm e}^{-2 i \left (d x +c \right )} b^{3}}{8 d}+\frac {5 a^{3} {\mathrm e}^{-3 i \left (d x +c \right )}}{96 d}-\frac {{\mathrm e}^{-3 i \left (d x +c \right )} b^{2} a}{8 d}+\frac {6 i b \,a^{2} c}{d}-\frac {4 i b^{3} c}{d}+\frac {2 b^{2} \left (3 a \,{\mathrm e}^{3 i \left (d x +c \right )}+b \,{\mathrm e}^{2 i \left (d x +c \right )}+3 \,{\mathrm e}^{i \left (d x +c \right )} a \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {3 b \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right ) a^{2}}{d}+\frac {2 b^{3} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )}{d}-\frac {a^{3} \cos \left (5 d x +5 c \right )}{80 d}-\frac {3 b \,a^{2} \cos \left (4 d x +4 c \right )}{32 d}\) \(381\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(d*x+c))^3*sin(d*x+c)^5,x,method=_RETURNVERBOSE)

[Out]

1/d*(b^3*(1/2*sin(d*x+c)^6/cos(d*x+c)^2+1/2*sin(d*x+c)^4+sin(d*x+c)^2+2*ln(cos(d*x+c)))+3*b^2*a*(sin(d*x+c)^6/
cos(d*x+c)+(8/3+sin(d*x+c)^4+4/3*sin(d*x+c)^2)*cos(d*x+c))+3*b*a^2*(-1/4*sin(d*x+c)^4-1/2*sin(d*x+c)^2-ln(cos(
d*x+c)))-1/5*a^3*(8/3+sin(d*x+c)^4+4/3*sin(d*x+c)^2)*cos(d*x+c))

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 142, normalized size = 0.84 \begin {gather*} -\frac {12 \, a^{3} \cos \left (d x + c\right )^{5} + 45 \, a^{2} b \cos \left (d x + c\right )^{4} - 20 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} - 30 \, {\left (6 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{2} + 60 \, {\left (a^{3} - 6 \, a b^{2}\right )} \cos \left (d x + c\right ) + 60 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \log \left (\cos \left (d x + c\right )\right ) - \frac {30 \, {\left (6 \, a b^{2} \cos \left (d x + c\right ) + b^{3}\right )}}{\cos \left (d x + c\right )^{2}}}{60 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*sin(d*x+c)^5,x, algorithm="maxima")

[Out]

-1/60*(12*a^3*cos(d*x + c)^5 + 45*a^2*b*cos(d*x + c)^4 - 20*(2*a^3 - 3*a*b^2)*cos(d*x + c)^3 - 30*(6*a^2*b - b
^3)*cos(d*x + c)^2 + 60*(a^3 - 6*a*b^2)*cos(d*x + c) + 60*(3*a^2*b - 2*b^3)*log(cos(d*x + c)) - 30*(6*a*b^2*co
s(d*x + c) + b^3)/cos(d*x + c)^2)/d

________________________________________________________________________________________

Fricas [A]
time = 3.22, size = 175, normalized size = 1.03 \begin {gather*} -\frac {96 \, a^{3} \cos \left (d x + c\right )^{7} + 360 \, a^{2} b \cos \left (d x + c\right )^{6} - 160 \, {\left (2 \, a^{3} - 3 \, a b^{2}\right )} \cos \left (d x + c\right )^{5} - 240 \, {\left (6 \, a^{2} b - b^{3}\right )} \cos \left (d x + c\right )^{4} - 1440 \, a b^{2} \cos \left (d x + c\right ) + 480 \, {\left (a^{3} - 6 \, a b^{2}\right )} \cos \left (d x + c\right )^{3} + 480 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \cos \left (d x + c\right )^{2} \log \left (-\cos \left (d x + c\right )\right ) - 240 \, b^{3} + 15 \, {\left (39 \, a^{2} b - 8 \, b^{3}\right )} \cos \left (d x + c\right )^{2}}{480 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*sin(d*x+c)^5,x, algorithm="fricas")

[Out]

-1/480*(96*a^3*cos(d*x + c)^7 + 360*a^2*b*cos(d*x + c)^6 - 160*(2*a^3 - 3*a*b^2)*cos(d*x + c)^5 - 240*(6*a^2*b
 - b^3)*cos(d*x + c)^4 - 1440*a*b^2*cos(d*x + c) + 480*(a^3 - 6*a*b^2)*cos(d*x + c)^3 + 480*(3*a^2*b - 2*b^3)*
cos(d*x + c)^2*log(-cos(d*x + c)) - 240*b^3 + 15*(39*a^2*b - 8*b^3)*cos(d*x + c)^2)/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))**3*sin(d*x+c)**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 695 vs. \(2 (160) = 320\).
time = 0.60, size = 695, normalized size = 4.09 \begin {gather*} \frac {60 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1 \right |}\right ) - 60 \, {\left (3 \, a^{2} b - 2 \, b^{3}\right )} \log \left ({\left | -\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1 \right |}\right ) + \frac {30 \, {\left (9 \, a^{2} b + 12 \, a b^{2} - 6 \, b^{3} + \frac {18 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {12 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {16 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {9 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {6 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}}{{\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} + 1\right )}^{2}} + \frac {64 \, a^{3} + 411 \, a^{2} b - 600 \, a b^{2} - 274 \, b^{3} - \frac {320 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} - \frac {2415 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {2640 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {1490 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}}{\cos \left (d x + c\right ) + 1} + \frac {640 \, a^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {5910 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {3840 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {3100 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - \frac {5910 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {2160 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3100 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {2415 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {360 \, a b^{2} {\left (\cos \left (d x + c\right ) - 1\right )}^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {1490 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - \frac {411 \, a^{2} b {\left (\cos \left (d x + c\right ) - 1\right )}^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}} + \frac {274 \, b^{3} {\left (\cos \left (d x + c\right ) - 1\right )}^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{{\left (\frac {\cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right ) + 1} - 1\right )}^{5}}}{60 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(d*x+c))^3*sin(d*x+c)^5,x, algorithm="giac")

[Out]

1/60*(60*(3*a^2*b - 2*b^3)*log(abs(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 1)) - 60*(3*a^2*b - 2*b^3)*log(abs
(-(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 1)) + 30*(9*a^2*b + 12*a*b^2 - 6*b^3 + 18*a^2*b*(cos(d*x + c) - 1)/(
cos(d*x + c) + 1) + 12*a*b^2*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 16*b^3*(cos(d*x + c) - 1)/(cos(d*x + c) +
 1) + 9*a^2*b*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 6*b^3*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2)/((c
os(d*x + c) - 1)/(cos(d*x + c) + 1) + 1)^2 + (64*a^3 + 411*a^2*b - 600*a*b^2 - 274*b^3 - 320*a^3*(cos(d*x + c)
 - 1)/(cos(d*x + c) + 1) - 2415*a^2*b*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 2640*a*b^2*(cos(d*x + c) - 1)/(c
os(d*x + c) + 1) + 1490*b^3*(cos(d*x + c) - 1)/(cos(d*x + c) + 1) + 640*a^3*(cos(d*x + c) - 1)^2/(cos(d*x + c)
 + 1)^2 + 5910*a^2*b*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 3840*a*b^2*(cos(d*x + c) - 1)^2/(cos(d*x + c)
 + 1)^2 - 3100*b^3*(cos(d*x + c) - 1)^2/(cos(d*x + c) + 1)^2 - 5910*a^2*b*(cos(d*x + c) - 1)^3/(cos(d*x + c) +
 1)^3 + 2160*a*b^2*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1)^3 + 3100*b^3*(cos(d*x + c) - 1)^3/(cos(d*x + c) + 1
)^3 + 2415*a^2*b*(cos(d*x + c) - 1)^4/(cos(d*x + c) + 1)^4 - 360*a*b^2*(cos(d*x + c) - 1)^4/(cos(d*x + c) + 1)
^4 - 1490*b^3*(cos(d*x + c) - 1)^4/(cos(d*x + c) + 1)^4 - 411*a^2*b*(cos(d*x + c) - 1)^5/(cos(d*x + c) + 1)^5
+ 274*b^3*(cos(d*x + c) - 1)^5/(cos(d*x + c) + 1)^5)/((cos(d*x + c) - 1)/(cos(d*x + c) + 1) - 1)^5)/d

________________________________________________________________________________________

Mupad [B]
time = 0.96, size = 143, normalized size = 0.84 \begin {gather*} -\frac {{\cos \left (c+d\,x\right )}^3\,\left (a\,b^2-\frac {2\,a^3}{3}\right )-{\cos \left (c+d\,x\right )}^2\,\left (3\,a^2\,b-\frac {b^3}{2}\right )+\ln \left (\cos \left (c+d\,x\right )\right )\,\left (3\,a^2\,b-2\,b^3\right )-\frac {\frac {b^3}{2}+3\,a\,\cos \left (c+d\,x\right )\,b^2}{{\cos \left (c+d\,x\right )}^2}-\cos \left (c+d\,x\right )\,\left (6\,a\,b^2-a^3\right )+\frac {a^3\,{\cos \left (c+d\,x\right )}^5}{5}+\frac {3\,a^2\,b\,{\cos \left (c+d\,x\right )}^4}{4}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^5*(a + b/cos(c + d*x))^3,x)

[Out]

-(cos(c + d*x)^3*(a*b^2 - (2*a^3)/3) - cos(c + d*x)^2*(3*a^2*b - b^3/2) + log(cos(c + d*x))*(3*a^2*b - 2*b^3)
- (b^3/2 + 3*a*b^2*cos(c + d*x))/cos(c + d*x)^2 - cos(c + d*x)*(6*a*b^2 - a^3) + (a^3*cos(c + d*x)^5)/5 + (3*a
^2*b*cos(c + d*x)^4)/4)/d

________________________________________________________________________________________